
O 4 - 152 663 EFFICIENT P RLLEL SOLUTION 
OF LINERR SYSTES(U) 

/
NRRRD UNIV CAMBRIDGE MR CENTER FOR RESEARCH IN
COMPUTER TECHNOLOGY V PAN ET AL. MAR 85 TR-02-95

UNCLSSIFIED N99914-80-C-0647 F/G 12/1 NL

ENMhhhmhl



2l8 i'-l
1.11 11121

Lw_-

1*25 1111114~jf



- ll ,A~ $- lp -ol I. M.---.-..-.---.-~-----. j, I

EFFICIENT PAPALLEL SOLUTION OF

LINEAR SYSTEM~S

Victor Pan
John Reif

e er

fo -ie

;;* sear

ac.. .-.ehn lo

* r..,

PR 1) 46

fl,------

eMaiac.sets0



EFFICIENT PARALLEL SOLUTION OF

LINEAR SYSTEMS

Victor Pan
John Reif

TR-02-85

DTIC

SDISTRIBUTION STATEMENEA
Appieved fat pubhe m!eavq.I

Dioibutioa Unalzritod

J&



SECUflITY CLASSIFICATIONi OF THIS PAGE (Whon 0.. Fnfered)

REOTDCUETTO PAGE READ INSTRUCTIONS
REPOT D~U1ANa~~uNBEFORE COMPLETING, FOPM

I. REPORT NUMBER 2.GOVT ACCE&WON NO. 3. REC PI NT' ATALOG NUAaER

4. TITLE (and Subtlil) S. TYPE OF REPORT 6 PERIOD COVERZo

EFFICIENT PARALLEL SOLUTION OF LINEAR SYSTEMS Technical Report

6. PERFORMING ORG. REPORT NUMBER

__________________________________________ TR-02-85
7. AUTHOR(s) 6. CONTRACT OR GRANT NUMBER(#)

* Victor Pan
*John Reif N00014-80-C-0647

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

AREA & WORK UNIT NUMSERS

Harvard University

Cambridge, MA 02138

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

office of Naval Research March 85
*800 North Quincy Street 13. NUMBER OF PAGES

Arlington, VA 22217 41
*14. MONITORING AGENCY NAME &ADORESSCII different from Controlling Office) 15. SECURITY CLASS. (of th~is report)

Same as above

Ira. OECLASSI FICATION/ DOWNGRADINGSCHEDULE

16. DISTRIBUTION STATEMENT lot thia Report)

1D SR11LMON STATEMT j
unlimited

DiatribUtion Unlimited

17. DISTRIBUTION STATEMENT (of tho abstract entered In Block 20, It different from Report)

unlimited DIT1ON STATEMENT A

Atpprovd fmi public Teleoag
Distribution Unlimited

I8. SUPPLEMENTARY NOTES

19. KEY *ORODS (Con~lnus tinl trers* side. it hneesry mid identify by bloc* number)

linear systems, parallel algorithms, matrix inverse, Newton's method,

rested dissection, sparse linear systems.

20. ABSTRACT (ContIn, n rove-* side If n@C9@..ry an i fdelt~y by block number)

See reverse side.

DD I JA 1473 EDITION OF 1 NOV1 65 IS OBISOLETE

S/N 0102-014' 6601
SECURITY CLAS..IFICATION OF THIS PAGE (l-he, Date ftitir-dy



.;--JHITY CLASSIFICATION OF THIS PAGE1hen Oec. Enterod)

Abstract

The most efficient known parallel algorithms for inversion of a nonsingular

n1x n matrix A or solving a linear system Ax =b over the rationals require

O(log n)2 time and M(n)vf" processors (where M(n) is the number of processors

required in order to multiply two n X n rational matrices in time O(log n).) Furth-

ermore, all known polylog time algorithms for those problems are unstable: they

require the calculations to be done with perfect precision; otherwise they give no

results at all.

This paper describes parallel algorithms that have good numerical stability

and remain efficient as n grows large. In particular, we describe a quadratically

convergent iterative method that gives the inverse (within the relative precision

2-n°(l of an nXn rational matrix A with condition < nO (1) in O(log n) 2 time

using M(n) processors. This is the optimum processor bound and a v' improve-

ment of known processor bounds for polylog time matrix inversion. It is the first

known polylog time algorithm that is numerically stable. The algorithm relies on

our method of computing an approximate inverse of A that involves O(log n)

parallel steps and n2 processors.

Also, we give a parallel algorithm for solution of a linear system Ax b

with a sparse nXn symmetric positive definite matrix A. If the graph G(A)I)

(which has n vertices and has an edge for each nonzero entry of A) is s(n)-

separable, then our algorithm requires only O((log n)(log s(n))2) time and

I E + NM(s(n)) processors. The algorithm computes a recursive factorization of

A so that the solution of any other linear system Ax = b' with the same matrix

A requires only O(log n log s(n)) time and I E I + s(n) 2 processors.

SECURITY CLASSIFICATION OF THIS PAGE(,i'en Dat Entered)

• ~.. . . . . . . . . ...... -- :': . -'. . .:-.: . ... --. ..-. :.'..,.....,.:,..:' ,,..,.



Efficient Parallel Solution of Linear Systems

Victor Pan
Computer Science Department

State University of New York at Albany
Albany, New York

and

John Reif"

Aiken Computation Lab.
Division of Applied Sciences, Harvard University

Cambridge, MA
and

Laboratory of Computer Science
Mass. Inst. of Technology

Cambridge, MA

Abstract

The most efficient known parallel algorithms for inversion of a nonsingular

nXn matrix A or solving a linear system Ax = b over the rationals require

O(log n) time and M(n)V)X processors (where M(n) is the number of processors

required in order to multiply two nXn rational matrices in time O(log n).) Furth-

ermore, all known polylog time algorithms for those problems are unstable: they

require the calculations to be done with perfect precision; otherwise they give no

results at all.

This paper describes parallel algorithms that have good numerical stability

and remain efficient as n grows large. In particular, we describe a quadratically

convergent iterative method that gives the inverse (within the relative precision

2n°() of an n X n rational matrix A with condition < nO() in O(log n)2 time

using M(n) processors. This is the optimum processor bound and a vn- improve-

ment of known processor bounds for polylog time matrix inversion. It is the first

known polylog time algorithm that is numerically stable. The algorithm relies on

Supported by NSF Grat MCS 8203232.

This work was supported by Oce of Naval Research Coatract N00014-80.C-0647.

/ . ;,f,' ;¢ o I'.



-2-

our method of computing an approximate inverse of A that involves O(log n)

parallel steps and n2 processors.

Also, we give a parallel algorithm for solution of a linear system Ax-- b

with a sparse nXn symmetric positive definite matrix A. If the graph G(A)

(which has n vertices and has an edge for each nonzero entry of A) is s(n)-

separable, then our algorithm requires only O((log n)(log s(n))2 ) time and

E I + M(s(n)) processors. The algorithm computes a recursive factorization of

A so that the solution of any other linear system Ax = b' with the same matrix

A requires only O(log n log s(n)) time and I E I + s(n)2 processors.

1. Introduction

Recently it has become feasible to construct computer architectures with a

large number of processors. We assume the parallel machine model of [Borodin,

von zur Gathen, and Hopcroft, 821, where on each step each processor can do a

single rational addition, subtraction, multiplication, or division. In this paper we

are concerned about the efficient use of this parallelism for solving some funda-

mental numerical problems such as

(1) INVERT: given an nXn rational matrix A - (aij), then output A71 within a

prescribed accuracy c if A is well-conditioned, else output ill-conditioned.

(2) LINEAR-SOLVE: given a well-conditioned nXn matrix A and a column vec-

tor b of length n, find x - A-b within a prescribed accuracy E.

We say that matrix A is well-conditioned if cond A < C for a certain param-

eter C. We say that we have computed A-' within accuracy e if the norm of the

error matrix divided by the norm of A-' does not exceed e.

We are interested in parallel algorithms that have good numerical stability,

polylog time bounds and small processor bounds for INVERT and LINEAR-

SOLVE. Certainly LINEAR-SOLVE can be immediately reduced to INVERT by

-. . . . . .i



-3-

the multiplication of A-' by b. Such a reduction of LINEAR-SOLVE to INVERT

is particularly appropriate if several linear systems Ax - b with the same A and

different b must be solved.

We will present the algorithms for INVERT and for LINEAR-SOLVE that

can be applied for any choice of C and e. On the other hand, the complexity

estimates of our algorithms depend on the choice of C and c. In this paper we

will be primarily concerned about the complexity estimates in the case where

C = n', -= 2-"" for some positive constants c and c' , say c=100, c' =10.

This covers all instances of practical interest. For the sake of completeness, we

will ndso supply the estimates in the case of arbitrary C and c. To simplify the

estimates, we will assume that the arithmetic operations are performed with

infinite precision. In addition, we will present the error estimates in the case of

finite precision computation; this will demonstrate that our iterative algorithms

are stable, moreover, two of them are self-correcting.

1.1. Previous Work On Parallel Matrix Inversion

Parallel algorithms with simultaneous polylog time and polynomial processor

bounds are known to exist for these problems, but their practical utility is limited

due to their large processor bounds. Furthermore these known algorithms have

numerical stability problems; if the -alculations are not taken in exact arithmetic,

their outputs may substantially differ from A-', so as not to constitute an

approximate inverse.

[Csanky, 761 gave the first proof that INVERT, over fields of characteristic

0, can be done in polylog time. The result was at that time surprising, and the

proof is quite elegant. Csanky used the Cayley-Hamilton theorem to reduce the .

problem of matrix inversion to essentially the problem of computing O(n) pro-

ducts of n X n matrices. Let M(n) > n2 be the number of processors sufficient in ...

order to multiply two nXn matrices in O(log n) time. By the upper bounds of Codes

I/or

-' ' .... ....... ........ ." " ..."- '- .. ..._'i.. . . . . . . .". .". ." '.. .". ."'". ."." ".".".".".".. . .". .".. . . ".. . ." '"



-4-

[Chandra, 761, M(n) < n2 1• We easily extend that result as follows. If nXn

matrices can be multiplied involving O(n ) arithmetic operations for some W> 2,

then M(n) = n', see Appendix A. The current best upper bound on w is 2.495...;

however, for matrices of smaller sizes we should count only on M(n)=n3 due to

the considerable overhead-of the known asymptotically fast algorithms for matrix

multiplication, see [Coppersmith and Winograd, 821 and compare [Pan, 84).

Csanky's algorithm takes simultaneous time O(log n)2 and nM(n) processors.

[Preparata and Sarwate, 78] reduced the processor bounds to n M(n). If nonex-

act arithmetic is used, as this occurs in practice, both of these methods suffer

from numerical instability due to the use of the Cayley-Hamilton theorem (see

discussion in [Wilkinson, 61,651). .

Two methods for parallel matrix inversion over arbitrary fields of constants

are known. [Borodin, von zur Gathen, and Hopcroft, 82] observe that the results

of fValiant, Skyum, Berkowitz, and Rackoff, 83] and [Strassen, 73] combined can

be used to parallelize the sequential Gaussian elimination algorithm for matrix

inversion. This yields a simultaneous O(log n) 2 time and (very large) polynomial

processor algorithm for INVERT over any field. (As a matter of fact, the

straightforward parallelization of the Gaussian elimination only yields O(n) time,

n2 processor algorithms for both INVERT and LINEAR-SOLVE.) 'Berkowitz, 84]

has another such matrix inversion algorithm over arbitrary fields. Neither of

these two polylog time algorithms can be viewed as practical in the case of real,

complex, or rational inputs.

1.2. Our Results for INVERT.

We have two main results:

(1) a parallel iterative method for INVERT in the case of well-conditioned

matrices, and

::."::.::

-' -"" -: ":""-- -' " " ","-- . - -' ' - " ' ,' -"- .: . .i' 
"
.. . ." . . -": "" "". ": ".-i'...:..... . . . . . . . .:-. ,-.:.. -'



- 5- :

(2) a parallel method for LINEAR-SOLVE in the case of symmetric positive

definite sparse matrices.

Both algorithms run in polylog time and give significant decrease of the known

processor bounds.

The iterative methods that we describe in Section 2 and Appendix C are

known ones, namely, the Newton iteration and its extensions. The first use of

the Newton iteration to invert a matrix is attributed by Householder to [Schultz,

331 but frequently goes by the name of [Hotelling, 43a,b] and [Bodewig, 59]. (See

[Householder, 64], [Isaacson and Keller, 66], and [Newman, 821 for more recent

descriptions of such methods.) [Bojariczyk, 84] made still another rediscovery of

Newton's method and proposed it for parallel computation.

The Newton method is not normally recommended for matrix inversion in

textbooks on numerical analysis, since an initial approximate inverse B of a given

matrix A is required such that III - BAIl is substantially less than I. The prob-

lem of efficiently (i.e., without inverting A) finding such an approximate inverse

of a well-conditioned matrix A was an open problem in numerical analysis for the

last 50 years since [Schultz, 331. For a strictly diagonally dominant matrix A an

approximate inverse B of A is an easily computable diagonal matrix, but no

known techniques give such B for a general matrix A.

We observe that it suffices to define an approximate inverse B such that

III - BAlI < 1 - (1/n 0 (M). Then, since the Newton method is quadratically con-

vergent, O(log n) iterations are sufficient for numerical computation of A-1 (up to

accuracy 2-n(u). Each iteration takes only O(log n) time and M(n) processors.

In that situation we managed to make the Newton iteration work by contributing

a method for computing an approximate inverse B of any given well-conditioned

matrix A such that III - BAlI < 1 - (1/n°(1 )), see Lemma 2.4 in Section 2 and its

substantiation in Section 3. The evaluation of such B involves only 3n 2-2n+l

----------------------------. ,....... ... ... ... .. . '



- 6-

arithmetic operations and 2n-2 comparisons that can be implemented using O(log

n) parallel steps and n2 processors, see Lemma 2.5 in Section 2. Our resulting

algorithm computes A- 1 using only a relatively few (only O(log n)) matrix multi-

plications, that is, using O((log n)2) time and M(n) processors. This makes the

algorithm efficient for both sequential and parallel computations. Thus we have

resolved the key problem that previously made the use of the Newton iteration

impractical for computation of A-1. Furthermore, our processor bound is optimal

because matrix multiplication can be reduced to matrix inversion, see [Borodin

and Munro, 75], p. 51. Our parallel and sequential time bounds are optimal o,

nearly optimal (up to within the factor O(log n)). We present the asymptotic

complexity estimates but the reader can see from our analysis that our algorithms

have small overhead, so they are efficient and practical already for moderate n.

1.3. Our Results for LINEAR-SOLVE in the Case of Sparse Symmetric

Positive Definite Systems. .........

Our another contribution is a method for LINEAR-SOLVE for sparse sym-

metric positive definite linear systems, which in many practical cases provides a

further order of magnitude improvement in processor bounds without significant

additional time cost. Our algorithm drastically differs from the known methods

for polylog time solution of linear systems, which make no use of the sparsity

structure of the matrix A. To characterize the linear systems Ax=b that our

algorithm solve, we will use the two following definitions.

Definition 1.1. Let C be a class of undirected graphs closed under the sub-

graph relation, that is, if G E C and G' is a subgraph of G, then G' E C. The

graphs of that class C are s(n)-8eparable if there exist constants no > 0 and

a, 0 < a < 1, such that for each graph G E C with n > no vertices there is a

partition VI,V 2,S of the vertex set of G such that

Il ,!an, IV 2 1 an, I SI 1-5s(n), and G has no edge from avertex of V,

.... ........... zJ .,'.... ... .. , ,...-._:. .... - -...... ".. - .- .- -.. ' -.. . - -. ,-. ' ". -.. ".



.-

to V2 (hence S is said to be an s(n)-separator of G and the class C is said to have

the s(n)-separator property).

Binary trees are obviously 1-separable. A d-dimensional grid (of a uniform

size in each dimension) is n-(/d)-separable. [Lipton and Tarjan, 791 show that

the planar graphs are vr'8n-separable and that every n-vertex finite element graph

with < k boundary vertices in every element is 4 Lk/2j vi-separable.

Definition 1.2. Given an n Xn symmetric matrix A= (aij), we define

G(A)=(V,E) to be the undirected graph with vertex set V={l,...,n} and edge set

E={{i,j} I aij - 0). A is sparse if I E I =o(n2).

The very large linear systems Ax=b that arise in practice often are sparse

and furthermore have graphs G(A) with small separators. Important examples of

such systems can be found in circuit analysis (e.g., in the analysis of the electrical

properties of a VLSI circuit), in structural mechanics (e.g., in the stress analysis

of large structures), and in fluid mechanics (e.g., in the design of airplane wings

and in weather prediction). These problems require the solution of (nonlinear)

partial differential equations, which are then closely approximated by very large

linear difference equations whose graphs are generally planar graphs or 3-

dimensional grids. The standard weather prediction model for the U.S.A., for

example, consists of a 3-dimensional grid with a very large number n of grid

points, but this grid has only a constant height h between 7 and 20, and hence it

is at most vfhs-separable.

In general, the inverse of a sparse matrix A (even of one with small separa-

tors) is dense. Our algorithm for LINEAR-SOLVE avoids computing the inverse

matrix, and instead computes a special factorization of A. For sparse matrices

with small separators, our polylog time algorithm yields processor bounds that

are an order of magnitude lower than the bounds attained by other polylog time

parallel algorithms, which compute the inverse matrix. Specifically, given an

!Z - --



- 8-

nx n positive definite symmetric matrix A such that G(A) is s(n)-separable and

s(n) is of the form n* for a constant o', then we can compute the special recursive

factorization of A in O((log n)(log s(n))2) time using I E I + M(s(n)) processors.

Then, given this recursive factorization, the solution of Ax=b for any given b

requires only O(log n log s(n)) time and I EI + (s(n))2 processors.

The key idea is to use a nested dissection of G(A) in order to reduce the

problem to inverting dense matrices of sizes at most s(n) X s(n). The idea of

nested dissection is well known for sequential methods. It was first proposed by

[George, 73] for grid graphs and later generalized by [Lipton, Rose, and Tarjan,

79] to graphs with small separators. We are the first to apply a nested dissection

to yield a parallel algorithm with polylog time bounds. The extension of the idea

of nested dissection from the sequential case to the parallel case was not immedi-

ate since many sets of separators must be eliminated at each parallel step.

Furthermore, in the parallel case we need a special recursive factorization of A,

distinct from the LDLT-factorization used in sequential nested dissection.

Let us comment on the complexity of our algorithm. At first we will assume

the practical bound M(n) - n3 for matrix multiplication. It is significant that

our parallel nested dissection algorithm has processor bounds that are substantial

practical improvements over the previously known bounds.

Let G be a fixed planar graph such that O(v )-separators are known for G

and its subgraphs. (For example, G might be a v/n X v grid graph). Then for

any n X n matrix A such that G = G(A) our parallel nested dissection algorithm

takes O(log n)3 time and n s processors to compute the special recursive factori-

zation of A, and then O(log n)2 time and n processors to solve any linear system

Ax=b with A fixed. We have the same time bounds and the processor bounds

ni" 5k3 and nk 2, respectively, if G(A) is an n-vertex finite element graph with < k

vertices on the boundary of each face. In yet another example, if G(A) is a 3-

. . .: .. .. . -. : -. .. -.o ... - -. - . . - . . ... -.. . . ... - . : • ... ... : .



-22-

factored as LLT where L is a linear triangular matrix, see [Wilkinson, 651, [Golub

and van Loan, 831. Furthermore such adecomposition Ao = LLT is unique if L

has positive diagonal entries. Then (4.2) and (4.3) imply similar decompositions

for the matrices Ah,Xh for all h, so that all of those matrices are symmetric posi-

tive definite. Let us designate Ah = LhLh , Xh = LhLh. Then Ah' - LhI(Lh-IT,

Xh = Lh(Lh )T and (4.2) and (4.3) imply that

Lh= [yL h X*
hXh-  Lh+J' L - L 1  j'

h=0,1...,d-1. Let ir be a column-vector such that Irvli = 1, lLhvll = ILhl, see

(2.1). Then, padding -v with zeros at the bottom, we will obtain a vector v such

that livi = 1 and IlLhvlI IlLhvll = iLhl, so that ijLh1l > I1Lhl. Similarly
jL hI > jL h. , I I L -' > I h-+ , J-1 _> IL -- +111, I h lI .[

By Lemma 3.4, all of those four bounds combined imply that

IlAhj > IlXhlI, IIAhfl > IIAh+ II,
IIA -'ll > IIXh-t1 , IIA -111 > IIA- 1111 for all h=0,1,...,d-1.

Surely cond A = cond Ao , so these inequalities immediately imply Lemma 4.4.

Q.E. D.

Remark 4.1. The algorithm of this section can be extended to the cases

where A is an arbitrary matrix with small separators and such that all "inter-

mediate" submatrices Xh are well-conditioned. The latter property, however,

may not hold even for some symmetric matrices A such as [ l where I E I is

small.

Lemma 4.2(b) implies S

Lemma 4.5. The matriz product YhYth T can be decomposed into Nh pro-

ducts of pairs of matrices of sizes at most nh,k X nhk for k=,...,Nh, where
Trih.k = I Sh~ .- These products can be computed in time O(log s(n)) 2 using a total "i

0



- 21-

some 0 < I < h-1, unless j* = j (we will omit the latter trivial case). Thus

there exists a path {j*+6 h = JJI2},{I2,J},.., i-,JI =j*+h} in Eh visiting

only vertices jl,...,jt in Rh; but the induction hypothesis (a) implies that there

can be no edge in E between Rh,k and Rh,k. for k4k° , so j1 ,...,J E Rhk for some

unique k. Thus we have established the case (b) of the lemma for Eh+1.

Next suppose the case (a) of Lemma 4.2 does not hold for h+1; so there

exists a path p in Gh+I between some i 0 Vh'k and j E Rh.k where ho > h+1 but

p visits no vertex v with ir(v) > 6h.+r Case (b) for h implies that

{i,j} E Eh+l - Eh only if there is a path in Gh between i and j containing only

vertices j1,...,j E Rh with 7r(jr) < 6h+,, for r--1,...,l. Thus we can construct from

p a path p' in Gh between i and j that visits no vertex v with ir(v) > 6 h.+ ,

violating the induction hypothesis for (a), a contradiction. Thus we have shown

that (a) holds for Gh+I, establishing the induction hypothesis for h+1. Q.E.D.

Lemma 4.2(a) implies that Eh contains no edge between Rh,k and Rhk. for

k 3 k. Since maxk I Rh,k I -- maxk s( I Vh,k I ) 5 s(ad-hn), we immediately

arrive at

Lemma 4.3. Xh is a block-diagonal matrix consisting of Nh - 2 d-h square

blocks, where each block is of size at moat s(ad-hn) X s(ad-hn).

Lemma 4.3 implies that the inversion of Xh l can be reduced to Nh < 2 -h"

parallel inversions of dense matrices (i.e., one dense matrix is associated with

each Rh,k), each of size at most s(ad-hn) X s(ad-hn). By Corollary 2.1, this can

be done in O(log s(n)) 2 time, NhM(s(ad-hn)) < 2d-hM(s(ad-hn)) processors. By

our assumptions, a"' < 1/2, so this processor bound is O(M(s(n))). In fact, we

need to prove the following lemma in order to be able to apply Corollary 2.1. -.

Lemma 4.4. cond Xh < cond A for all h.

Proof. A -PApT is a symmetric-positive definite matrix, so it can be

V. .. '' .,. .-. . . '.... ' 2.. ... . .. .•.-?. ', '.. i--" -.. .. --v,''. -,-.".. .""



- .- --- -' - -..-

-20-

entry at the i-th row and the j-th column of A, is nonzero provided that here the

rows are counted bottom-up and the columns from right to left.

The fill-in at stage h is the set of edges that are in Eh but not in Eh-1. The

following technical lemma upper bounds this fill-in and also provides some useful

information about the connectivity structure of Gh.

Lemma 4.2. Let h > 0. Then

a) if p is a path in Gh between i f Vh.,k and j E Rh.,k for some h" > h and some

k, then p visits some vertex v such that vr(v) > 6h+ ,, that is, v f Rq for S

q < ho

b) Eh+ 1 C {{i,j} E Eh I ij Rh)

U{{i,j} -k El {i,J},{JJ 2}, {J 1 -tJ }, {Jij} E Eh}

where j1, .. E Rhk and wri) > 6h, ir(j) > 6h}.

Proof (by induction on h). We first consider the case (a) with h=O.

Observe that if there is a path p in Go between some i 0 Vh.,k and j E Rh-,k for

any h* > 0, then p must contain a vertex, say j, of the separator set Sh.+lk.,"

where (Vh.+,kSV.+,k*) is the parent node of (VV.,k,Sh.,k) in TG.This vertex j* has

number r(j*) > 6h.+, as required.

Suppose that Lemma 4.2(a) holds for some fixed h and for all h" > h. By

definition, A h -I = Zh - YhX 'YT . Let Xh = (xli), X- (Yi), Yh = (Yi), S

Zh = (zii), and Wh = YhXh- - (wii). If i,j} E Eh+,, then ij f Rh, by the

definition of Rh, so r(i) > 4+1, 7r(j) > 6+. Furthermore we have zi_,jh 34 0 or

otherwise wi-khi,b 3 0. If zi-jb_, 34 0, then {i,j} E Eh as claimed. On the other

hand, if wi_ , 34$ 0, then j*+6h,j* *+6h E Rh such that y41" - 0, *i,' 0

and yXi" 7 0. It follows that {i,j+6},{j,j . "+h} E Eh.Furthermore the Cayley-

Hamilton Theorem gives Xh' = c01 + cXh -+...+ Ch_.Xh -  for some scalars

c0, , . . . , onj1.Hence .i.. & 0 implies that the (j*,j") entry of X11 is not 0, for

S ff%



- 19- :- .-. r--

d

Observe that, by definition, Rh flRh. = if h -7A h* and that V =u R..
hmO

Let r {l,...,n} -- (,...,n} be any enumeration of the n vertices of G such --

that, if v E Rh, v* E Rh. for h' > h, then x(v) < x(v*). Thus the elements of

lr(Rh) are in the range from 6h+l,...,6h+ 1 where 6
h  Eg<h I Rs I Such an

enumeration can be easily computed in total time O(log n)2 using n/log n proces-

sors by first numbering the vertices of Rd - Sd by n, n-i,... and then numbering -,

(also in the decreasing order) all previously unnumbered vertices of Rh of height h

for each h=d-1,d-2,...,0.

We now define the permutation matrix P such that P1 = I ifj r(i) and

Pij = 0 otherwise. Then we define the initial matrix Ao = PAPT. Recursively,

for h-0,1,...,d-1,

[h Yh 1
Ah -Yh Zh]

is the (n- 6h) X (n-6h) symmetric matrix where Xh is the I Rh I X I Rh I upper

left submatrix of Ah,Yh is the (n-bh- I Rh I) X I Rh ) lower left submatrix of

Ah, and Zh is the (n- 6h- I Rh I) X (n- 6h- I Rh I) lower right submatrix of A h.We

then define Ah+i = Zh - YhXh'YhT .Thus at stage h we have eliminated the ele-

ments associated with Rh.Note that Ah+1 is symmetric positive definite if Ah is,

compare the proof of Lemma 4.4 below. We now claim that we can compute

Ah+I from Xh, Zh and Yh in time O(log s(n)) 2 using at most M(s(n)) processors.

To prove this, we must investigate the sparsity structure of the latter subma-

trices of Ah.

Let A h - (aiih)). We define an associated graph Gh = (Vh,Eb) with vertex

set Vh = {6h+I, 6h+ 2 ,...,n } and edge set Eh - ({i+6h, j+6 h) 0}; that is,a,,

Gh is derived from G(Ah) by adding 6h to each vertex number, see Figures 1,2,3,4

and 5 below. This enumeration implies that (n-i,n-j) E E. if and only if the

.................................. .... .... ...



- 18-

Efficient parallel computation of s(n)-separators is not simple in general but

it is rather straightforward in the practically important cases of grid graphs (see

illustrative Figures 1,2,3,4,5 below); similarly such computation is simple for

many finite element graphs, compare [George,731.

To prove Theorem 4.1, we will begin with defining a binary tree TG for each

graph G E C, see Figure 6. Suppose G=(V,E) has n vertices. If a < no, where

no is a gi'ren constant, (see Definition 1.1), we let TG be the trivial tree with no

edges and with the single leaf (V,S) where S=V. Else, if n > n0, we recall that

we know an s(n)-separator S of G so that we can find a partition VI, V2, S of V

such that there is no edge in E between the sets V, and V2, and furthermore

lVn, I on, IV2 1 !5 on, and I S 1 s(n). Then TG is defined to be the

binary tree with the root (V,S) having exactly two children that are the roots of

the two subtrees TG,, TG2 of TG wherm Gh is the subgraph of G induced by the

vertex set S U Vh for h=1,2.

Let the height of a node v in TG equal d minus the length of the path from

the root to v where d, the height of the root, is the maximum length of a path

from the root to a leaf. Let Nh be the number of nodes of height h in TG .Since .

T G is a binary tree, Nh < 2 d-h. Let (Vhl, Sh,1), (VhNNShNb) be a list of these

Nb

nodes of height h and let Sh = U Sh,k . Observe that by the s(n)-separable pro-
k I

perty of C, I Vh,k od-hn and I Sh,k 1 _ s(od-hn) for each h > 0 and

k = I,...,Nh. Thus d < c*log n, c* = 1/log(l/a) for an < no, VO,k I no and

Sok = Vok for all k, by the definition of the tree TG.

For each k - 1,...,Nh such that Sh,k 3 Vh,k, let Rh,k denote the set of all

elements of Sh,k that are not in Sh. for h* > h. (Actually Rh,k = Sh,k - U Sh*,k*

where the union is over all ancestors (Vh.,k.,Sh.,k.) of (Vh,k,Sh,k).) The s(n)-

Nh

separable property implies that Rh,k, n Rh,k, = if ki 3 k2. Let Rh U Rh,k.
k-I

• .



- 17-

symmetric positive definite matrix A such that cond A < nO(i) and G-G(A), we

can numerically compute a recursive s(n)-factorization in time O(log n(log s(n))2 )

using I E I + M(s(n)) + n/log n processors (where M(s(n)) is the number of pro-

cessors sufficient in order to multiply two s(n) X s(n) matrices in time

O(log s(n))). Furthermore that recursive s(n)-factorization satisfies Lemmas" 4.5

and 4.6 below. Whenever such a recursive s(n)-factorization of A is available,

O(iog n log s(n)) time and I E I + s(n)2 processors suffice to solve a system of

linear equations Ax=b for any given column vector b of length n.

Corollary 4.1. Fix an n-vertex planar graph G such that O(v'n)-separators

for G and for its subgraphs have been precomputed. If A is an nXn symmetric

positive definite matrix with G=G(A) and if cond A < nO(), then we can numer-

ically compute a recursive O(vrn)-factorization of A in time O(log n) 3 using

M(V/n) < n1.25 processors. Whenever such a recursive factorization is available,

O(log n)2 time and n processors suffice to solve Ax-=b for a given b.

Corollary 4.2. Fix an n-vertez finite element graph G with at most k ver-

tices on the boundary of every face. Let O(kv"-)-separators for G and for its sub-

graphs have been precomputed. If A is an nXn symmetric positive definite

matrix with G=G(A) and if cond A+< no('), then we can numerically compute a
recursive O(kv/'n)-factorization of A in time O(log n)3 using M(kv.) k2 n' 2 5

processors. Whenever such a recursive factorization is available, O(Iog n) 2 time

and nk2 processors suffice to solve Az=b for a given b.

Corollary 4.3. If A is an nXn symmetric positive definite matrix with a

d-dimensional grid graph (for any d > 2) and if cond a < no (1), then we can

numerically compute a recursive (ni-(I/d))-factorization of A in time O(log n)3

using M(n -(t/d)) < n2.S-(2. 5/d) processors. Whenever such a recursive factoriza-

lion is available, O(Iog n)2 time and n2 - (2/d) processors suffice to solve Ax=b for a

given b.



- 16-

and Xh is a block-diagonal matrix consisting of square blocks of sizes at most

s(ad-hn) X s (ed-ha) where no _ a dn, no is a constant. (Here and hereafter WT

denotes the transpose of a matrix W.) Such a recursive s(n)-factorization has

length at most d < O(log n) (whereas a customary LDLT factorization has length

n). This recursive factorization is said to be numerically computed if the com-

puted approximants of the induced matrices A, ..., A d satisfy (4.1) within error

norm 2- , for a positive constant c.

Observe that, by definition of a recursive s(n)-factorization, we have for

h=O,...,d-I the identity 1 01 Xh 01 0 x;T 4
Ah- (hx

-I I Ah+] ( (4.2)

and hence

_- T  t 0I 0 "-

Ahus 1  Ah-+] [Yh
-  I (4.3)

Thus given a recursive s(n)-factorization (4.1), it is easy to recursively com-

pute A-Ib for any column vector b of length n.

Lemma 4.1. For all constants a, a*,c such that 1/2 < a' < a < 1, if

s(n) cn" and if C is a class of s(n)-separable graphs with respect to a, then C

is s'(n)-separable with respect to a*, where s*(n) cnff/(l-aU).

Lemma 4.1 can be proven following [Lipton and Tarjan, 79], see the end of

this section. Without loss of generality, in the following we will assume that

a = 1/2 (see Lemma 4.1), that M(n) = " and that s(n) = O(n) for fixed con-

stants w and o such that 0 < o < 1, and 2 < w < 3. Furthermore we will

assume that or > 1/w such that a < 1/2"' (see Lemma 4.1), so all < 1/2.

Theorem 4.1. If C is a class of s(n)-separable graphs and if the s(n)-

separators of a graph G E C and of its subgraphs are known, then given an nXn

"- ... ..-.-,..-....... -..... ...,.. -- .. -...... ...... ...... -. . . .. .-



Lemma 3.5. Let B and t be defined by (2.6). Let p be an eigenvalue of

R(B) = I-BA. ThenO <p :5 1 -1/((cond A)2n).

Proof. Let R(B)v = ga for v 9& 0. Then (I-tAHA)v = v - tAHAv = gay.

Therefore AHAv = Xv for X =(1-p)/t so X is an eigenvalue of AHA. Corollary

3.2 implies that 1/11A-112 < (1 _ p)/t < hJAil2. It immediately follows that

1-tlAhl 2 < p 1-t/IfA-112. (3.1)

It remains to recall (2.6) and to apply the inequalities of Lemma 3.3. Q.E.D.

Since p is an arbitrary elgenvalue of R(B), p(R(B)) : I - 1/((cond A)2n).

On the other hand, IIR(B)II = p(R(B)) since R(B) - tAHA is Hermitian. This

completes the proof of Lemma 2.4. Q.E.D.

4. Parallel Generalized Nested Dissection

In this section, we fix a class C of undirected graphs, which are n)

separable (with respect to constants no and a), see Definition 1.1. Let A be an

nXn symmetric positive definite matrix with graph G=G(A) in class C (see

Definitions 3.1 and 1.2). Even if A is sparse, and if G(A) has small separators,

A-' may not be sparse (and in fact if 0(A) is connected, A-' may have no zero

entries). We will describe an efficient parallel algorithm that computes a special

recursive factorization of A. With that factorization available, it will become

very easy to solve the system of linear equations of the form Ax=b for any given

vector b.

Definition 4.1. A recursive s(n) -factorization of a matriz A with res pect to

a, 0< a< 1, is a sequence of matrices A0, A,, ... , Ad Such that Ao =PApT' p is

an nXii permutation matrix and for h=0,1,...,d-1,

Ah= Y Zh Zb=Ah+j + YX TY, (4.1)

.~~Y . .'.

*. . . .. . . . . . . . . . . . . . . . . . . . . . . . .



-14-

symmetric positive definite. (WHW is Hermitian since

(WHW)H = WH1 WH)H = WHW, compare Definition 2.2.)

We will use the 3 following well known results, see [Atkinson, 78], pp. 418-

431, or [Wilkinson, 651. (Recall that IIWIi denotes the 2-norm of a matrix W.)

Lemma 3.1. IW11 IIWHII for all W; 1W1 1 p(W) if W = WH.

Lemma 3.2. All eigenvalues of a Hermitian positive semidefinite matrix are

nonnegative.

Lemma 3.3. Let W - (w1). Then IIWHWII p(WHW) IIW112 <

IIW"WIli _ max ij wI ~iax I wii 1 nllWHWII.
i j i

Applying Lemma 3.3 to W - AH we obtain that IIAH112 < l/t where t is

defined by (2.8). Therefore, by Lemma 3.1, JIAHII < 1/(tllAlI). Taking into

account that 1hAII > max I ai I we derive the first 2 inequalities of Lemma 2.4.

Corollary 3.1. Let A = (aij), B be defined by (2.61. Then

113ll 1/ IJIAII < 1/max I ajl I

It remains to prove the last inequality of Lemma 2.4.

Lemma 3.4. Let X be an eigenvalue of a nonsingular matrix W. Then I/X

is an eigenvalue of W-1.

Proof. Surely X 3 0 for nonsingular W. Let Wv = Xv for a vector v 3 0. a

Then Wv 0 and W-'(Wv) - v - (I/X)Xv = (1/X)Wv. Q.E.D.

Corollary 3.2. Let X be an eigenvalue of AHA and A be nonsingular. Then

I/11A-1112 < X < IAl2.

Proof. X < p(AHA) - IA112 by Definition 3.1 and Lemma 3.3. On the

other hand, (AHA)-l - A-I(A-I)H, so (AHA) -1 is a Hermitian positive definite

matrix. By the virtue of Lemma 3.4, l/X is an eigenvalue of (AHA) - n. Conse-

quently l/X < p((AHA) - ) p(A-1 (A-1 )H) -IIA- 1112. Q.E.D.

o p



-13-

respectively, compare (2.1). Let (cond W). - IWI.11W-11l, if W is nonaingular,

s " 0o or s=1.

Remark 2.1. Using Definition 2.3 we may rewrite (2.6) as

B =tAH , t ffil([A[[oo IIA1). i -

Substituting this into (3.1) and using Lemma 3.3 of the next section, we deduce

that

IJR(B)II I-I/(IIAIJIIIAjhj1 IA--1 2) < (2.0)
l-l/((cond A),,o (cond A),).

Furthermore we may choose

B---tAHt - 1I/IAHAII, 2 l/(IAH[t[I[A[II) 1/( 1 A[[.IIAII 1)

and deduce from (3.1) and Lemma 3.3 that, for this choice of B, - -

IIR(B)II _< -1/(jjA"1Ajj IIA- jj2), (2.10)

which is a further small improvement over (2.8) and (2.9). (2.9) and (2.10) lead

to the respective improvements of Corollary 2.2.

Remark 2.2. Lemma 2.4 can be proven for any (nonsingular) matrix A.

For certain classes of matrices A there exist other options for choosing an approx-

imate inverse B. In Appendix B we indicate such options for some important

classes of matrices including Hermitian (real symmetric) positive definite, diago-

nally dominant and triangular matrices.

3. Proof of Lemma 2.4.

Definition 3.1, p(W), the spectral radius of a matrix W, is the maximum

magnitude of the eigenvalues of W.

Definition 3.2. A matrix that can be represented as WHW for some matrix

W is called a Hermitian positive semidefinite matrix (or a Hermitian nonnegative

definite matrix). A nonsingular Hermitian positive semidefinite matrix is called

Hermitian positive definite. A real Hermitian positive definite matrix is called



-12 -

IB13 1/hIAll !5 1/max I aij 1, R(B)tl 5 1-.1/((cond A)2n). (2.8)

We also immediately verity the following estimate.

Lemma 2.6. Computing B by (2.6) cost* only 302-2n+1 arithmetic opera.

tions, and 2n-2 comnparisons that can be performed in Oflog n) time using n2 pro-

cessors.

Combining Theorem 2.1, Lemmas 2.4 and 2.5, and the inequality of (2.7) we

get2

Corollary 2.1. Let A = (aj), c be arbitrary constant, cond A < no(').

* Then O(logen) time, M(n) processors suffice to compute a matrix X-1 such that

IIA-1 - XA1 11 <5 2-n / VAIl IA-1hI2- / cond A < JlAll12-0c.
Although Corollary 2.1 covers all instances A of practical interest, we will

*also state the following immediate generalization of that corollary, compare (2.8)

and Theorem 2.1.

Corollary 2.2. For any number k and for any nonsingular nXna matrix A,

it is sufficient to use O(k log n) parallel steps and M(n) processors in order to

compute a matrix AC' such that

11A'11 - I1A1'11 5 (1-1/(n(cond A)2))2' / hAIl
IIA 1I( 1-1/( n(cond A)2))2kfcond A < IIA-'1I ( 1-1/(n(cond A) 2) )2.*

In particular if cond A < C, then the precision hJAll - 11A1 - A-111 < t < 1

*can be assured using O(log n (1+ 1log(nC2 log(1/E)I ) parallel steps and M(n)

processors, if C and e are arbitrary positive constants, e < 1.

In the next remark and in Appendix B we will use the following definition,

* compare [Atkinson, 781, [Golub and van Loan, 831, [Wilkinson, 651.

Definition 2.3. JJW&I 0  max F, w11 I 1W111 = max F, wij are the
J J

operator norms of a matrix W = w~ij associated with the maximum norm

hljvLj. maxi vi I and with the i-norm hlvjli = j Ivi of a vector v (v)



1i - 11 -

binary numbers of the form a2- k where a and k are integers,
j a I < 2m , 0 < k < m, In = n° ( }

Lemma 2.3 immediately implies the following

Theorem 2.1. Let (2.2) and (2.4) hold and let c be a constant. Then

O(log2n) time and simultaneously M(n) processors suffice in order to compute a

matrix A' satisfying (2.5).

Here (and frequently hereafter) we exploit the possibility to reduce the

number of processors by a constant factor k by the price of slowing down the

computation k times.

It remains to choose B satisfying (2.4) for a nonsingular A. Hereafter in all

expressions Ei,Ej,maxi,maxj,maxij the integer parameters i and j range from I to

n. Let us specify the vector norm to be the Euclidean norm,

Ilvil = (EI v, 1) 112, and let us extend that vector norm to the matrix norm by

(2.1). The resulting matrix norm is called the 2-norm. Let us choose

B -- tAH , t -" /(max E I aii I rapx F, I a4i 1 (2.6) i
i j J i "

Definition 2.2. Here and hereafter WH designates the Hermitian transpose

of a matrix W = (wi). WH = (wi!), wj? being the complex conjugate of wi. If

WH - W, W is called a Hermitian matrix. If W is real, then WH is the transpose

of W (which we will designate WT) and Hermitian W means symmetric W, such

that wi= = wji for all i,j.

cond W = JIWll * IIW-111 > 1i11 = i if W is nonsingular, (2.7)

cond W = oo otherwise.

We will prove the next lemma in the next section, compare also Remark 2.1

below and Remark B.1 in Appendix B.

Lemma 2.4. Let A - (a) be nonsingular, let B be defined by (2.6) and

R(B) be defined by (2.2). Then

.-.. ....,...-.._.. ... ._......, .-,......-..' .-.. . . .-.....-..-.. '.-... . . . . . . . .. . .,..................... .... ............,...-........ .-........-.............



-10-

R(B) - I - BA, IIR(B)II = q < 1. (2.2)

(Actually (2.2) implies that A and B are-nonsingular, see [Atkinson, 781, p. 465.)

Note that ]I(R(B))i : q. 0 as i -- co if (2.2) holds.

Lemma 2.1. Let I(R(B))'i[ - 0 as i --+ oo. Then A-' = (R(B))'B.

Q.E.D.

Proof. A- ' - (A-'B-)B = (BA)-'B - (I-R(B))-'B = , (R(B))'B. Q.E.D.
i-O

Lemma 2 1 immediately implies

k-I
Lemma 2.2. Let B; = (r- (I+(R(B)2))B. Then A-'-Bk E (R(B))iB.

h-0 i-h

The relations (2.2) and Lemma 2.2 imply that

IA- ' - Bk'll < q'IfBiJ = q2 111311 / (1-q). (2.3)

The first algorithm for INVERT successively computes (R(B))2" and Bh* for

h=o,1...,k-l. Recall that, by the virtue of (2.2), Il(R(B))'lI < q', so the computa-

tion by that algorithm is stable. In Appendix C we will also consider two other

algorithms that converge to A-1 with the same speed. Those algorithms are supe-

rior over the first algorithr,- for they are not only stable but also self-correcting.

(2.3) implies

Lemma 2.3. Let (2.2) hold and

q = I - I/n O(' ) as n - oo . (2.4)

Let c be a constant. Then O(log n) iterations of the algorithm of this section

suffice in order to compute a matrix "A- 1 such that

II-' - A-II 2'n IIBII. (2.5)
The latter precision suffices for all practical purposes and cannot be reduced

further if I (log 11B1) 1 < no (1) and if the entries of A-1 are to be represented by

% "- V.- ,t.I



- I . I i- g *g-

dimensional grid, so is n2/-separable, then we have the same time bounds as for

planar and finite element graphs, and our processor bounds are n2 and n133 ,

respectively. Furthermore, if we use more theoretical bounds for matrix multipli-

cation, say M(n) = n2-5, then our processor bounds, for computing the special

recursive factorization are further decreased to n1 25 in planar case, to nl'2k 2.5 in

the case of n-vertex finite element graphs with < k vertices per face and to n. 7

for the 3-dimensional grid.

1.4. Contents

In Section 2 we present our iterative parallel algorithm for INVERT and its

complexity estimates. In Section 3 we prove the main lemma of Section 2. In

Section 4 we present our parallel algorithm for LINEAR-SOLVE in the case of

sparse symmetric positive definite systems and bound its complexity. In Appen-

dix A we bound the asymptotic parallel complexity of matrix multiplication. In

Appendix B we consider the simplified methods for defining an approximate

inverses of some special matrices. In Appendix C we consider two alternatives to

the iterative algorithm of Section 2. In Appendix D we analyze the errors of our

algorithms.

2. Iterative Methods for Parallel Matrix Inversion

Definition 2.1. Let a vector norm be fixed. Then we extend it to the asso-

ciated operator norm of matrices so that

=W = max IIWvI / 11v1 (2.1)

for all nonzero vectors v and for all matrices W.

In the following nO (1) denotes the values bounded by a polynomial in n %s

n - oo , A = (aij) is a fixed nXn nonsingular complex matrix (so A-' exists), I

denotes the nXn identity matrix, R(X) denotes I -XA, and B is called an

approzimate inverse of A if

. :.,.: '. ,..., , ... . '._'.'._ - -. ,,. . . . . ..-. .,. . . . . . . ,r. ' .' ..-.. , . .- . .. .. ,,, . , . .- -: . .. . -.- -. \



- ~ ~~ ~~~~ - -. - -. - - -, - - -. -I -5S I - -

L -23-

Nb

Of E M(nh,k) processors.
k=I

To estimate this number of processors, we need

Nb
Lemma 4.6. For any -1> 1, E 6 = OWsU)7 .

k-I

Proof. Observe that, by the definition of the tree TG, if the nodes

(Vhl~kS-l~,)and (Vh..,k,,Sh..,k,) are the children of the node (Vhk,Shk), then

nhI,k1 + nh.4,k, nh + I Sb,k I nh,k + S(a d-hn) since I h I ~ ~d-hn).

N4
This recursive inequality implies that E n , is maximized when only one term

k-i

is nonzero; in this case NE -ksa ') ~~)Y because we have

k-i h*-h+1

assumed that s(n) = O(nG). Q.E.D.

Since we have also assumed that M(n) = ni', Lemma 4.8 implies that

Nb
E M(nh) = O(MI(s(n))). By slowing the parallel computation down by a con-

k=I

stant factor, we can reduce the processor bounds to M(s(n)) thus arriving at

Lemma 4.7. Ah+l = Zh - YhXhIYh can be computed in time O(log s(n)) 2

using M(s(n)) proc essors.

Since there are only d=O(log n) stages, each taking O(log s(n)) 2 time and

using M(s(n)) processors, we conclude that O(log n(log s(n)) 2) is the total time

required in order to numerically compute the recursive s(n)-factorization of A

using M(s(n)) processors.

Thereafter, we can solve Ax=b for any given column-vector b of length n by

computing x=-lb by recursive application of equation (4.2) for h=O,1,...,d-1.

The stage h of this "backsolving" computation requires parallel multiplication of

a matrix of size nb,k X nb,k times a column-vector for each k=I,2,...,Nh. Thus

Nb

stage h can be done in time O(log s(n)) using F, nh~ processors. By Lemma 4.6,
k-I



-24-

this bounds the number of processors to O(s(n) 2), and a slowdown by a constant

factor reduces this processor bound to s(n) 2. The total time for ali d=O(log n)

stages of such backsolving computation is O(log n log s (n)). This completes the 0

proof of Theorem 4.1, except it remains to justify our assumption that all < 1/2

by proving Lemma 4.1.

Proof of Lemma 4.1. Let us first assume that a* > 1/2. Given any

graph G E C, where G = (V,E) and n I  n0, we can partition V into

disjoint sets V 1*,V2*,S ° such that I VI* con, I V*I * n, (S I O(s(n))

and VI* and V2' are not connected by E. That partition can simply be found by

appropriately combining the Nh : (a* - 1/2)1/1og 20 = 0(1) vertex subsets

found at depth h = d-log((a ° - 1/2)/Iog a) of T0 . The separator Sh' is defined to

be the union of all separators of depths > h in TG, and since there is only a con-

stant number of such separators, I Sh ' O(s(n)). Then VI" can be any maximal

collection of the vertex subsets of depth h in TG where n/2 < I V' I an.

Letting V2* = V - Vl-Sh*, we have lV2"I _ n-(n/2)_ n/2_< an, so C is

s*(n)-separable with respect to a' where s(n) = 0(s( i)) provided that a ° > 1/2.

This already justifies the assumption that a"' < 1/2 if a > 1/W, which is actu-

ally sufficient for our purpose. The extension to the case a*= 1/2 and the

decrease of the constant hidden in O(s(n)) to 1/(1-a)) are obtained similarly to

the proof of Corollary 3 of [Lipton and Tarjan, 791. Q.E.D.

S

S

S



-25 -

Figure 1. The 7X7 grid graph Go, with elimination numbering

1 25 2 43 9 '31
-, 10

17 26 18 44 21 32 2

3 27 -4__ 45 ill 33_'1

37 38 39 46 40 41 '4

5 28 6 47 13 _34

19 29 20 148 :23 35

17 130 18 J49 L15 136
- - --- 16



-28-

Figure 2. The graph G, derived from Go by simultaneous elimination Of

17 44

22I



- 27 -

Figure 3. The graph G2 derived from G, by simultaneous
elimination of R, ( 17,18,...,24).

37 42

49 6



-28-

Figure 4. The graph G3 derived from 02 by simultaneous
elimination of R2 ( 25,26,...,36).

49



- 2g-

Figure S. The graph G4 derived from G3 by simultaneous
elimination of R3.= (37,38,... ,42).

43

44

45

46

47

49



- 30 -

Figure 6. Tree Tc0 In the case d=2.

(VV

(V0 1 v0 (V 2 V0 2 (V0 3 V 043 0,



- 31 - ,._:

References

Atkinson, K.E., An Introduction to Numerical Analysis, Wiley, New York (1978).

Berkowitz, S., "On Computing the Determinant in Small Parallel Time Using a
Small Number of Processors", Information Processing Letters 18, 147-150
(1984).

Bodewig, E., Matrix Calculus, Second Edition, Intersc 1,ice Publishers, Inc., New
York; North-Holland Company, Amsterdam (1959).

Bojaiiczyk, A., "Complexity of Solving Linear Systems in Different Models of
Computation", SIAM J. on Numerical Analysis 21(3), 591-603 (1984).

Borodin, A., J. Yon zur Gathen, and J. Hopcroft, "Fast Parallel Matrix and GCD
Computations", Information an' Control 52(3), 241-256 (1982).

Borodin, A. and I. Munro, The Computational Complexity of Algebraic and
Numeric Problems, American Elsevier, New York (1975).

Chandra, A.K., "Maximal Parallelism in Matrix Multiplication", Report RC-6193,
I.B.M. Watson Research Center, Yorktown Heights, New York (October
1976).

Coppersmith, D. and S. Winograd, "On the Asymptotic Complexity of Matrix
Multiplication", SIAM J. on Computing 11(3), 472-492 (1982).

Csanky, L., "Fast Parallel Matrix Inversion Algorithms", SIAM J. on Computing
5(4), 618-623 (1976).

George, J.A., "Nested Dissection of a Regular Finite Element Mesh", SIAM J. on
Numerical Analysis 10(2), 345-367 (1983).

Golub, G.H. and C.F. van Loan, Matrix Computation, The Johns Hopkins
University Press, Baltimore (1983).

Hageman, L. and D. Young, Applied Iterative Methods, Academic Press, New
York (1981).

Heller, D., "A Determinant Theorem With Applications to Parallel Algorithms",
Tech. Report, Comp. Sci. Dept., Carnegie-Mellon University (March 1973).

Hotelling, H., "Some New Methods in Matrix Calculation", Ann. Math. Statist.
14, 1-34 (1943a).

Hotelling, H., "Further Points on Matrix Calculations and Simultaneous Equa-
tions", Ann. Math. Statist. 14, 440-441 (1943b).

Householder, A., The Theory of Matrices in Numerical Analysis, Blaisdell Pub-
lishing Co., New York (1964).

i . . . . . . . .. . . .i i .. . . ..i I. . . . .. . "' " ..



-32-

Isaacson, E. and H.B. Keller, Analysis of Numerical Methods, Wiley, New York
(1966).

Lipton, R., D. Rose, and R.E. Tarjan, "Generalized Nested Dissection", SIM J.
on Numerical Analysis 16(2), 346-358 (1979).

Lipton, R.J. and R.E. Tarjan, "A Separator Theorem for Planar Graphs", SIAM
J. on Appi. Math. 36, 177-189 (1979).

Newman, M., "Matrix Computation", Survey of Numerical Analysis, 222-255, (S.
Todd, Ed.), McGraw Hill, New York (1982).

Pan, V., How to Multiply Matrices Faster, Lecture Notes in Computer Science,
179, Springer-Verlag, Berlin (1984).

Preparata, F.P. and D.V. Sarwate, "An Improved Parallel Processor Bound in
Fast Matrix Inversion", Information Processing Letters 7(3), 148-149.

Schultz, G., "Iterative Berechnung der Reziproken Matrix", Z. Angew. Math.
Mech. 13, 57-59 (1933).P

Strassen, V., "Vermeidung von Divisionen", J. Reine Angew. Math. 164, 184-202
(1973).

Valiant, L., S. Skyum, S. Berkowitz, and C. Rackoff, "Fast Parallel Computation
of Polynomials Using Few Processors", SIAM J. on Computing 12(4), 641-644
(1983).

Varga, R.S., Matix: Iterative Analysis, Prentice-Hall (1962).

Wilkinson, i.H., "Error Analysis of Direct Methods of Matrix Inversion", J.AMC
8, 281-330 (1961).

Wilkinson, J.H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford

Young, D.M., Iterative Solution of Large Linear Systems, Academic Press, New
York (1971).



-33-

Appendix A. Asymptotic Parallel Complexity of Matrix Multiplication

Theorem A.1. Suppose that the product of two NxN matrices can be com-

puted in O(NW) arithmetic operations for w > 2. Then such a product can be

computed in parallel time O(log N) involving at moot NW processors.

Proof. We recall the well known class of bilinear algorithms of rank M for

the evaluation of an n X n matrix product XY - (E xij Yjk)- Such algorithms first

compute the 2M linear functions

Lq - E f(i,j,q)xij, Lq* = f f(j,k,q)Yjk, q=1,...,M, (A.1)

ij j,k

then the M products L qLq, and finally Ej xij Yjk as the linear functions in those

products,

M-I
xij Yjk = E f"(k,i,q) LqLq. (A.2)
~qM-O

Here f(ij,q), f*(j,k,q) and f"(k,i,q) are constants. Such a bilinear algorithm can

be applied recursively, substituting nXn matrices for the variables xij and Yjk in -

(A.1), (A.2) and applying the same algorithm in order to multiply Lq and L,

which become nXn matrices in that case. (Such recursive bilinear algorithms

compute nhxnh matrix product involving O(Mh) arithmetic operations.) It is well

known, see [Strassen, 731, [Coppersmith and Winograd, 82], that for large n there

exist the above recursive bilinear algorithms of rank M < n' that evaluate an

n Xn matrix product, provided that the assumption of Theorem A.I holds.

Let us estimate the parallel complexity of such recursive bilinear algorithms

for n x nh matrix multiplication, that is, the time T(h) and the number of pro-

cessors P(h) involved in such algorithms.

(A.l),(A.2) immediately imply that simultaneously

T(h) _ T(h-l) + 2 log n + log M + 5,

P(h) _5 max{2n 2h, Mn 2h-2, P(h-I)M).

...... ...................... : ... . v_



-34- S

Choosing h -* oo we immediately deduce the desired estimates of Theorem A.1 in

the case where N is a power of n. The extension to arbitrary NxN matrices is

also immediate via embedding those matrices into nhxnh matrices banded with 0

zeros for h D'log N/log nl.

Appendix B. Approximate Inverses in Some Special Cases.

In this section we will improve the choice (2.6) of an approximate inverse of

A for certain classes of matrices A.

Modification B.1, compare [Isaacson and Keller, 66), p. 84. Let X1,, 2,...,,

be the eigenvalues of AHA such that

'\I ): ' 2  )*''- !'a> 0.

(As follows from Lemmas 3.3 and 3.4,

X1 -- lAi 2, -\ I/11A-112-) (B.1)

If for a given matrix A we may precompute X1 and Xn, then we may improve

the choice (2.6) for the approximate inverse B of A by setting

B t*AH, t' 2/(XI + Xn)- (B.2)

(B.1) and (B.2) imply that JIR(B)Jl = ('1 - ),n)/( ! + )n), and this leads to the

following equations, which improve over the bounds of Lemma 2.4,

q = IIR(B)lI = (cond A)2-1 = - 2.3)

(cond A)2+I (cond A) 2+I (

(Indeed, IIR(B)ll = p(R(B)), see Lemma 3.1, and the eigenvalues of R(B) are just

p -" 1-t 1 i, i=l,...,n, see the proof of Lemma 3.5, so that 1-t*X1  i 1 l-tX*X,

i=l,...,n. It remains to recall (B.1),(B.2) in order to arrive at (B.3).)

The improvement over the estimate of Lemma 2.4 is limited, however, that

is, I-IjR(B)fl increases less than 2n times even if we may precompute X1 and X

satisfying (B.1) and then replace (2.6) by (B.2).

Modification B.2. If the matrix A is Hermitian positive definite, (see

.. -. ''o'o..'oo'.°.O O.......o ...... ,.-o-o............. .. .. 4 ..



- 35 -

Definition 3.1), which is frequent in practical computations, see [Golub and van

Loan, 831, [Hageman and Young, 81], [Young, 711, then we may choose

B t' It' = I/max I a I l, /IIAII : ,l x Ia% I.

Extending the proof of Lemma 2.4, we derive in this case that

IlR(B)II :5 l-t /JIA'Il < 1 - I/(nl/2 cond A). (B.4)

Remark B.1. Actually we may reduce the inversion of an arbitrary non-

singular matrix A to the inversion of the Hermitian positive definite matrix AHA

since A-' = (AHA)I1A Then we will arrive at the bound (B.4) (where AHA

replaces A) if we compute the 1-norm IIAHAII, of the matrix AHA and choose

B = 1/IIAHA1I,, see Definition 2.3. The resulting estimate (B.4) will be close to

(2.8) and (2.10).

Modifications B-1 and B.2 can be combined together if A is a Hermitian posi-

tive definite matrix and if h1Ail and 1/11A-'hI can be precomputed, in which case

setting B =21/(IIAII + 1/11A'hl1) we would yield IIR(B)hI I - 2
cond A+1I

Modification B.3. Case 1. Let A =(aj) be strongly diagonally dominant,

that is, let for a constant c

(2-1/nc)Iaal > ajIfor alli (B3.5)

or

(2-1/n') I ajj > I a1 I for all j. (B.6)

The class of diagonally dominant matrices is very important in applications, see

[Varga, 62] and [Hageman and Young, 811. (B.5) implies that A is strongly row-

diagonally dominant; (B.6) implies that A is strongly column-diagonally dominant.

In both cases we choose

B =diag(1/a,,,1/a22, V1ann). (B.7)



-- - - - --------

-36-

Lemma B.1, compare Definition 2.3. (B.5) and (B.7) imply that

IIR(B)I o ! -1/ne. (B.8)

(B.6) and (B. 7) imply that

IIR(B)I1, !5 1 - I/ne. (B.9)

Proof. For all i the row-vector i of the matrix R(B)=I-BA has the 1-norm

equal to E I aij /aii which is not greater than 1-1/n' if (B.5) holds. This
i,'i

immediately implies (B.8). (B.6) and (B.9) turn into (B.5) and (13.8) if A replaces

A H. m

Thus in the cases where A is strongly diagonally dominant we choose B

defined by (B.7) and again arrive at the bounds of Corollary 2.1 provided that

one of the two norm of Definition 2.3 substitutes for the 2-norm. The computa-

tion of B by (B.7) involves only n arithmetic operations that can be performed

using 1 parallel step and n processors.

Modification B.3. Case 2. Let A-- (aj) be a triangular matrix. Then

define B by (B.7) and apply the algorithm of Section 2 for computing Bk for

k = flog ni. Although B does not satisfy (2.2) in this case, the method works

simply because R(B) is an nXn triangular matrix whose diagonal is filled with

n-I
zeros and therefore R(B)' = 0 if i>n. Thus A-1 Bk- =E j(R(B))1 B, so that

i-0

the convergence of the algorithm to A-' in log ni steps immediately follows for S

any triangular nonsingular matrix A even if cond A is exponentially large, com-

pare [Csanky, 76] and [Heller, 731. (Note that the inversion of a matrix A can be

reduced to the inversion of triangular marices if the QR-factors of A or LUP- S

factors of A are available.)

Appendix C. Refinement of the Approximate Inverse of a Matrix by

Newton's Iteration and by the Residual Correction Method.

• S."



- 37.

Next we will consider two alternatives to the first iterative algorithm for

INVERT described in Section 2. As in "the case of the first algorithm, we will

assume that an approximate inverse B of A has been precomputed such that (2.2)

holds.

The second algorithm performs Newton's iteration for the matrix equation

R(X) = 0 by successively computing

Bb = (21 - Bh_,A)BhI = (I + R(BhI))Bhl (C.I)

for h=1,2,... and letting B0 = B. It is readily verified that R(Bh) = (R(B ,)) 2 for

h-1,2,..., so that I - BkA - R(Bk) = (R(io))2b for all k. We postmultiply the

latter equations by A- 1, note that (2.2) and Lemma 2.1 imply that

IIA-'II jIBjll(1-q), (C.2)

and arrive at the bound

IIA - - bkII q_ q l1311/( -q),  (C.3)

compare (2.3).

The third algorithm relies on the well known residual correction method, see

[Atkinson, 781, p. 469. We successively compute

Xh+l,, = Xh,g + B5(I - AXh,s), Xo,S = B. for h=0,1,...,s-1,s>2 (C.4)

where g=O0 and B0 = B satisfies (2.2). Then we recursively perform the iteration

sweep (C.4) for g=1,2,..., choosing B, = X.,g. Within each iteration sweep (C.4)

I - Xh+l,gA - (I - Xh,gA)(I - BgA), h=0,1,...,s-l, see [Atkinson, 78], so that

III - Bg+iAII < III - BgA1I8. Therefore after k iteration sweeps (C.4) we arrive at

an approximation Bk to A-' such that III - BkAII !_ q'o. We postmultiply I - BkA

by A7 , recall (C.2) and deduce that

IA-' - BkII _ qShIIBII/(l-q). (C.5)

For s=2, (C.5) is similar to (2.3) and (C.3).

Unlike the algorithms of Section 2, both algorithms of this appendix are

. .. . ..



i -38-

self-correcting; the errors of computing Bk and Xh. for any k,h,g do not pro-

pagate, that is, they are automatically corrected at the next iterations provided,

of course, that the iterations are not too much contaminated by the errors (it is

necessary that in spite of the errors the computed matrices Bk and Xhg remain to

be approximate inverses of A), see the next appendix.

Appendix D. Some Error Estimates.

Let us assume that the computation of B by (2.6) and the subsequent

Newton's iteration (C.1) have been performed with finite precision chopping to d

binary digits and let us estimate the total round-off errors of the computation.

Let A(u) and b (u) - a(u)" designate the absolute and the relative errors of
Hull

computing u where u can be a matrix or a scalar (in the latter case

Ijull = I uI, IuIIll = I Au I ). As this is customary, we will assume that

d --- oo and will ignore the values of smaller orders of magnitudes.

We immediately derive from (2.6) that 6 (l/t) < 21-d, 6 (B) < 3 2-d.

Since IlBI _/hAlll, see (2.8), it follows that

III-(B + AB)AII _ III-BAII + 3. 2 d _ 1+3" 2d-l/(n(cond A)2).

Therefore it is sufficient to choose d = O(log n) in order to assure that, say

_ [I-(B+ AB)AII < 1-0.8/n c  (D.I1)

provided that II-BAIl < 1-1/nc. Therefore if we compute B by (2.6), it is

sufficient to choose d = O(log n) in order to assure that the computed approxi-

mation matrix B + AB will remain practically as good as the approximate

inverse B, that is, the total number of iterations sufficient for computing A-1 with

required precision may increase at most by 1 if B + AB substitutes for B. (Note

that the first iteration squares the residual norm and turn 1-0.6/n' into

1-l.2/nc+0.36/n 2 , which is less than 1-1/nc for large n, compare (D.1).)

........................................

°- . .

-a...- . . . . . . . . . ..-. .-. ..-.. . . ..-. -.i.--." -' - . - - . . .. - .- - .L " . L ." , ." ." -'. L ',, .. ",- ' -,' .' ',



- 3g -

Next let us assume that Bb-! and A are given and that Bh has been com-

puted by (C.1) using d binary digits. If the straightforward algorithm for matrix

multiplication is used, then the error bounds IIA(Bh-A)fI and IIA(Bh)II can be

immediately estimated applying the backward error analysis, see [Wilkinson, 65].

The error analysis is not too hard even if the matrix multiplications in (C.1) are

performed by asymptotically fast algorithms. In [Pan, 84), pp. 117-127, the error

analysis is presented for such fast sequential algorithms; the analysis does not

change in the case of parallel computation. In particular, Corollary 23.4, p. 121,

and Theorem 24.2, p. 127, of [Pan, 84] imply that

IIA(]bA)II _< 2-dnO(I)jIb._I * flAIl. (D.2)

Let I[I-B&AII - q, so that IlI-'BgAl < q2, for all g. Then (C.1) implies that

jjbhjj :5 !5[IB-ttll3h1[ (l+qr')llBh-lll :_ (l+q+q!+ ' - - qh)Jjboll, "

compare Lemma 2.2. Therefore

IIil * IhAII (1/(-q))lB0 l * IIAII 5 I/(l-q),.

since B = is defined by (2.6), compare (2.8). Substitute this into (D.2) and

deduce that

hIA(bb_1A)II __ 2-dnO(l)/(l-q) < 2-nO1).

if l-q > I/n ° 111.

Similarly we extend this bound to the following estimate.

1lA(B)I : 2-dnOI ()I+R(Bh-I)jj * IIBh- 1 1 : 2-dn( 1 )/llAI

so that

hI-(Bh + A(Bh))AII _< hI-BhAII + 2-dn vu).

If, say II-bhAll < 2, then it is sufficient to choose d=n'+O(log n) in order

to assure that IIl-(bh + A(Bh))AI 2-n'. Then again bh + A(13h) serves practi-

cally as well as Bh in the subsequent iterations (C.1), (that is, 1-2 extra iterations

shall guarantee at least the original precision of the output if 13h + A(bh) replaces

S.*.. . . .. ..



- 40-

Bh in (C.1)).

Similar error estimates can be obtained if the third algorithm (using the resi-

dual corrections (C.4)) is applied.



FILMED

5-85

DTI
D I C


